
Faculty Chair
Perimeter Institute for Theoretical Physics
Research Faculty
Office of Executive Leadership
Areas of research: Quantum Gravity
Understanding the nature of space and time has been a central question for philosophy and physics throughout the centuries. Space time in its classical form underlies the formulations of quantum (field) theory as well as classical gravity. Yet we know today that both theories are incomplete and that classical space time should be replaced by quantum spacetime. With my research I am contributing towards the construction of a consistent theory of quantum gravity and towards an understanding of quantum space time. My work focusses in particular on non-perturbative approaches of quantum gravity and here on how to obtain a theory of quantum gravity valid over all scales. Such a theory of quantum gravity needs to incorporate renormalization concepts in its very construction. Thus my work involves the understanding of renormalization in a background independent context and with it the development of a framework of how to consistently formulate and construct a theory of quantum gravity. Arguable quantum gravity should be based on a Lorentzian (that is real time) path integral. Most path integrals evaluation techniques rely however on an Euclidianization (that is imaginary time). I am developing techniques to evaluate Lorentzian path integrals in quantum gravity, and explore some foundational questions related to the Lorentzian path integral. This includes the investigation of causality properties and topology change in quantum gravity. A partial list of subjects I am interested in: Loop quantum gravity and spin foams. Discrete geometries and diffeomorphism symmetry. Renormalization in background independent theories and tensor network coarse graining. Renormalization and tensor network techniques in lattice gauge theories. New notions of quantum geometry derived from topological field theories. Topological phases and defects. Holographic formulations of quantum gravity. Observables in covariant systems and general relativity. The Lorentzian path integral in quantum gravity. Causality properties in quantum gravity.
- Junior Research Faculty, Perimeter Institute for Theoretical Physics, 2012-2017
- Adjunct Professor, University of Waterloo, 2012-present
- Adjunct Professor, University of Guelph, 2011-2014
- Max Planck Research Group Leader, Max Planck Institute for Gravitational Physics, Potsdam, 2009-2012
- Marie Curie Fellow, Universiteit Utrecht, 2008-2009
- Postdoctoral Researcher, Perimeter Institute for Theoretical Physics, 2005-2008
- Resident PhD Student, Perimeter Institute for Theoretical Physics, 2003-2004
- PhD fellow, Max Planck Institute for Gravitational Physics, Potsdam, 2002-2005
- CAP-CRM Prize, Canadian Association of Physicists and Centre de recherches mathematiques, 2024
- FQXi Grant, Fetzer Franklin Fund, 2021-2022
- Computational Resources Grant, Compute Canada, 2021-2022
- Computational Resources Grant, Compute Canada, 2020-2021
- Simons Emmy Noether Fellows Program Grant, Simons Foundation, 2018-2026
- Discovery Grant, Natural Sciences and Engineering Research Council of Canada (NSERC), 2017-2023
- Early Researcher Award, Province of Ontario, 2014
- Otto Hahn Medal for Young Scientists, Max Planck Society, 2007
- Asante, S. K., Dittrich, B., & Padua-Argüelles, J. (2023). Complex actions and causality violations: applications to Lorentzian quantum cosmology. Classical and Quantum Gravity, 40(10), 105005. doi:10.1088/1361-6382/accc01
- Borissova, J. N., & Dittrich, B. (2023). Towards effective actions for the continuum limit of spin foams. Classical and Quantum Gravity, 40(10), 105006. doi:10.1088/1361-6382/accbfb
- Dittrich, B., & Kogios, A. (2023). From spin foams to area metric dynamics to gravitons. Classical and Quantum Gravity, 40(9), 095011. doi:10.1088/1361-6382/acc5d9
- Borissova, J. N., & Dittrich, B. (2023). Lorentzian quantum gravity via Pachner moves: one-loop evaluation. doi:10.48550/arxiv.2303.07367
- Asante, S. K., Dittrich, B., & Steinhaus, S. (2022). Spin foams, Refinement limit and Renormalization. doi:10.48550/arxiv.2211.09578
- de Boer, J., Dittrich, B., Eichhorn, A., Giddings, S. B., Gielen, S., Liberati, S., . . . Verlinde, H. (2022). Frontiers of Quantum Gravity: shared challenges, converging directions. doi:10.48550/arxiv.2207.10618
- Asante, S. K., & Dittrich, B. (n.d.). Perfect discretizations as a gateway to one-loop partition functions for 4D gravity. Journal of High Energy Physics, 2022(5), 172. doi:10.1007/jhep05(2022)172
- Dittrich, B., Gielen, S., & Schander, S. (2022). Lorentzian quantum cosmology goes simplicial. Classical and Quantum Gravity, 39(3), 035012. doi:10.1088/1361-6382/ac42ad
- Asante, S. K., Dittrich, B., & Padua-Argüelles, J. (2021). Effective spin foam models for Lorentzian quantum gravity. Classical and Quantum Gravity, 38(19), 195002. doi:10.1088/1361-6382/ac1b44
- Bahr, B., Dittrich, B., & Geiller, M. (2021). A new realization of quantum geometry. Classical and Quantum Gravity, 38(14), 145021. doi:10.1088/1361-6382/abfed1
- Asante, S. K., Dittrich, B., & Haggard, H. M. (2021). Discrete gravity dynamics from effective spin foams. Classical and Quantum Gravity, 38(14), 145023. doi:10.1088/1361-6382/ac011b
- Dittrich, B. (2021). Modified Graviton Dynamics From Spin Foams: The Area Regge Action. arxiv:2105.10808v1
- Asante, S. K., Dittrich, B., & Haggard, H. M. (2020). Effective Spin Foam Models for Four-Dimensional Quantum Gravity. Physical Review Letters, 125(23), 231301. doi:10.1103/physrevlett.125.231301
- Asante, S. K., Dittrich, B., Girelli, F., Riello, A., & Tsimiklis, P. (2020). Quantum geometry from higher gauge theory. Classical and Quantum Gravity, 37(20), 205001. doi:10.1088/1361-6382/aba589
- Cunningham, W. J., Dittrich, B., & Steinhaus, S. (n.d.). Tensor Network Renormalization with Fusion Charges—Applications to 3D Lattice Gauge Theory. Universe, 6(7), 97. doi:10.3390/universe6070097
- Asante, S., Dittrich, B., & Hopfmueller, F. (n.d.). Holographic Formulation of 3D Metric Gravity with Finite Boundaries. Universe, 5(8), 181. doi:10.3390/universe5080181
- Asante, S. K., Dittrich, B., & Haggard, H. M. (2019). Holographic description of boundary gravitons in (3+1) dimensions. Journal of High Energy Physics, 2019(1), 144. doi:10.1007/jhep01(2019)144
- Dittrich, B., Goeller, C., Livine, E. R., & Riello, A. (2019). Quasi-local holographic dualities in non-perturbative 3d quantum gravity I – Convergence of multiple approaches and examples of Ponzano–Regge statistical duals. Nuclear Physics B, 938, 807-877. doi:10.1016/j.nuclphysb.2018.06.007
- Dittrich, B., Goeller, C., Livine, E. R., & Riello, A. (2019). Quasi-local holographic dualities in non-perturbative 3d quantum gravity II – From coherent quantum boundaries to BMS3 characters. Nuclear Physics B, 938, 878-934. doi:10.1016/j.nuclphysb.2018.06.010
- Delcamp, C., & Dittrich, B. (2018). Towards a dual spin network basis for (3+1)d lattice gauge theories and topological phases. Journal of High Energy Physics, 2018(10), 23. doi:10.1007/jhep10(2018)023
- Dittrich, B. (n.d.). Cosmological Constant from Condensation of Defect Excitations. Universe, 4(7), 81. doi:10.3390/universe4070081
- Asante, S. K., Dittrich, B., & Haggard, H. M. (2018). The degrees of freedom of area Regge calculus: dynamics, non-metricity, and broken diffeomorphisms. Classical and Quantum Gravity, 35(13), 135009. doi:10.1088/1361-6382/aac588
- Dittrich, B., Goeller, C., Livine, E. R., & Riello, A. (2018). Quasi-local holographic dualities in non-perturbative 3D quantum gravity. Classical and Quantum Gravity, 35(13), 13lt01. doi:10.1088/1361-6382/aac606
- Delcamp, C., & Dittrich, B. (2017). Towards a phase diagram for spin foams. Classical and Quantum Gravity, 34(22), 225006. doi:10.1088/1361-6382/aa8f24
- Delcamp, C., & Dittrich, B. (2017). From 3D topological quantum field theories to 4D models with defects. Journal of Mathematical Physics, 58(6), 062302. doi:10.1063/1.4989535
- Dittrich, B., Höhn, P. A., Koslowski, T. A., & Nelson, M. I. (2017). Can chaos be observed in quantum gravity?. Physics Letters B, 769, 554-560. doi:10.1016/j.physletb.2017.02.038
- Dittrich, B. (2017). The Continuum Limit of Loop Quantum Gravity: A Framework for Solving the Theory. In Loop Quantum Gravity (Vol. 4, pp. 153-179). World Scientific Publishing. doi:10.1142/9789813220003_0006
- Dittrich, B. (2017). (3 + 1)-dimensional topological phases and self-dual quantum geometries encoded on Heegaard surfaces. Journal of High Energy Physics, 2017(5), 123. doi:10.1007/jhep05(2017)123
- Delcamp, C., Dittrich, B., & Riello, A. (2017). Fusion basis for lattice gauge theory and loop quantum gravity. Journal of High Energy Physics, 2017(2), 61. doi:10.1007/jhep02(2017)061
- Dittrich, B., & Geiller, M. (2017). Quantum gravity kinematics from extended TQFTs. New Journal of Physics, 19(1), 013003. doi:10.1088/1367-2630/aa54e2
- Dittrich, B., & Hnybida, J. (2016). Ising model from intertwiners. Annales de l’Institut Henri Poincaré D Combinatorics Physics and their Interactions, 3(4), 363-380. doi:10.4171/aihpd/32
- Dittrich, B., Schnetter, E., Seth, C. J., & Steinhaus, S. (2016). Coarse graining flow of spin foam intertwiners. Physical Review D, 94(12), 124050. doi:10.1103/physrevd.94.124050
- Delcamp, C., Dittrich, B., & Riello, A. (2016). On entanglement entropy in non-Abelian lattice gauge theory and 3D quantum gravity. Journal of High Energy Physics, 2016(11), 102. doi:10.1007/jhep11(2016)102
- Dittrich, B., Mizera, S., & Steinhaus, S. (2016). Decorated tensor network renormalization for lattice gauge theories and spin foam models. New Journal of Physics, 18(5), 053009. doi:10.1088/1367-2630/18/5/053009
- Dittrich, B., & Kaminski, W. (2013). Topological lattice field theories from intertwiner dynamics. arxiv:1311.1798v1
- Dittrich, B., Hoehn, P. A., Koslowski, T. A., & Nelson, M. I. (2015). Chaos, Dirac observables and constraint quantization. doi:10.48550/arxiv.1508.01947
- Dittrich, B., Martín-Benito, M., & Schnetter, E. (2013). Coarse graining of spin net models: dynamics of intertwiners. New Journal of Physics, 15(10), 103004. doi:10.1088/1367-2630/15/10/103004
- Dittrich, B., Guedes, C., & Oriti, D. (2013). On the space of generalized fluxes for loop quantum gravity. Classical and Quantum Gravity, 30(5), 055008. doi:10.1088/0264-9381/30/5/055008
- Dittrich, B., & Geiller, M. (2015). Flux formulation of loop quantum gravity: classical framework. Classical and Quantum Gravity, 32(13), 135016. doi:10.1088/0264-9381/32/13/135016
- Dittrich, B., & Geiller, M. (2015). A new vacuum for loop quantum gravity. Classical and Quantum Gravity, 32(11), 112001. doi:10.1088/0264-9381/32/11/112001
- Bonzom, V., & Dittrich, B. (2013). Bubble divergences and gauge symmetries in spin foams. Physical Review D, 88(12), 124021. doi:10.1103/physrevd.88.124021
- Bonzom, V., & Dittrich, B. (2016). 3D holography: from discretum to continuum. Journal of High Energy Physics, 2016(3), 208. doi:10.1007/jhep03(2016)208
- Bonzom, V., & Dittrich, B. (2013). Dirac’s discrete hypersurface deformation algebras. Classical and Quantum Gravity, 30(20), 205013. doi:10.1088/0264-9381/30/20/205013
- Bahr, B., Dittrich, B., & Steinhaus, S. (2011). Perfect discretization of reparametrization invariant path integrals. Physical Review D, 83(10), 105026. doi:10.1103/physrevd.83.105026
- Bahr, B., Dittrich, B., Hellmann, F., & Kaminski, W. (2013). Holonomy spin foam models: Definition and coarse graining. Physical Review D, 87(4), 044048. doi:10.1103/physrevd.87.044048
- Dittrich, B., & Ryan, J. P. (2011). Phase space descriptions for simplicial 4D geometries. Classical and Quantum Gravity, 28(6), 065006. doi:10.1088/0264-9381/28/6/065006
- Dittrich, B., & Ryan, J. P. (2013). On the role of the Barbero–Immirzi parameter in discrete quantum gravity. Classical and Quantum Gravity, 30(9), 095015. doi:10.1088/0264-9381/30/9/095015
- Dittrich, B., Martin-Benito, M., & Steinhaus, S. (2014). Quantum group spin nets: Refinement limit and relation to spin foams. Physical Review D, 90(2), 024058. doi:10.1103/physrevd.90.024058
- Dittrich, B., & Speziale, S. (2008). Area–angle variables for general relativity. New Journal of Physics, 10(8), 083006. doi:10.1088/1367-2630/10/8/083006
- Dittrich, B., Freidel, L., & Speziale, S. (2007). Linearized dynamics from the 4-simplex Regge action. Physical Review D, 76(10), 104020. doi:10.1103/physrevd.76.104020
- Dittrich, B., Kaminski, W., & Steinhaus, S. (2014). Discretization independence implies non-locality in 4D discrete quantum gravity. Classical and Quantum Gravity, 31(24), 245009. doi:10.1088/0264-9381/31/24/245009
- Dittrich, B., Hellmann, F., & Kaminski, W. (2013). Holonomy spin foam models: boundary Hilbert spaces and time evolution operators. Classical and Quantum Gravity, 30(8), 085005. doi:10.1088/0264-9381/30/8/085005
- Dittrich, B., & Steinhaus, S. (2014). Time evolution as refining, coarse graining and entangling. New Journal of Physics, 16(12), 123041. doi:10.1088/1367-2630/16/12/123041
- Dittrich, B., & Steinhaus, S. (2012). Path integral measure and triangulation independence in discrete gravity. Physical Review D, 85(4), 044032. doi:10.1103/physrevd.85.044032
- Dittrich, B., & Thiemann, T. (2006). Testing the master constraint programme for loop quantum gravity: III. SL(2\hbox{,}\,\protect\bb{R}) models. Classical and Quantum Gravity, 23(4), 1089. doi:10.1088/0264-9381/23/4/003
- Dittrich, B., & Thiemann, T. (2009). Are the spectra of geometrical operators in loop quantum gravity really discrete?. Journal of Mathematical Physics, 50(1), 012503. doi:10.1063/1.3054277
- Dittrich, B., & Thiemann, T. (2006). Testing the master constraint programme for loop quantum gravity: V. Interacting field theories. Classical and Quantum Gravity, 23(4), 1143. doi:10.1088/0264-9381/23/4/005
- Dittrich, B., & Thiemann, T. (2006). Testing the master constraint programme for loop quantum gravity: I. General framework. Classical and Quantum Gravity, 23(4), 1025. doi:10.1088/0264-9381/23/4/001
- Dittrich, B., & Thiemann, T. (2006). Testing the master constraint programme for loop quantum gravity: II. Finite-dimensional systems. Classical and Quantum Gravity, 23(4), 1067. doi:10.1088/0264-9381/23/4/002
- Dittrich, B., & Thiemann, T. (2006). Testing the master constraint programme for loop quantum gravity: IV. Free field theories. Classical and Quantum Gravity, 23(4), 1121. doi:10.1088/0264-9381/23/4/004
- Dittrich, B., & Tambornino, J. (2007). A perturbative approach to Dirac observables and their spacetime algebra. Classical and Quantum Gravity, 24(4), 757. doi:10.1088/0264-9381/24/4/001
- Dittrich, B., & Tambornino, J. (2007). Gauge-invariant perturbations around symmetry-reduced sectors of general relativity: applications to cosmology. Classical and Quantum Gravity, 24(18), 4543. doi:10.1088/0264-9381/24/18/001
- Dittrich, B. (2006). Partial and complete observables for canonical general relativity. Classical and Quantum Gravity, 23(22), 6155. doi:10.1088/0264-9381/23/22/006
- Dittrich, B. (2012). From the discrete to the continuous: towards a cylindrically consistent dynamics. New Journal of Physics, 14(12), 123004. doi:10.1088/1367-2630/14/12/123004
- Dittrich, B., & Höhn, P. A. (2013). Constraint analysis for variational discrete systems. Journal of Mathematical Physics, 54(9), 093505. doi:10.1063/1.4818895
- Dittrich, B. (2007). Partial and complete observables for Hamiltonian constrained systems. General Relativity and Gravitation, 39(11), 1891-1927. doi:10.1007/s10714-007-0495-2
- Dittrich, B. (2013). How to construct diffeomorphism symmetry on the lattice. In Proceedings of 3rd Quantum Gravity and Quantum Geometry School — PoS(QGQGS 2011) (pp. 012). Sissa Medialab Srl. doi:10.22323/1.140.0012
- Dittrich, B., & Eckert, F. C. (2012). Towards computational insights into the large-scale structure of spin foams. Journal of Physics Conference Series, 360(1), 012004. doi:10.1088/1742-6596/360/1/012004
- Dittrich, B., Eckert, F. C., & Martin-Benito, M. (2012). Coarse graining methods for spin net and spin foam models. New Journal of Physics, 14(3), 035008. doi:10.1088/1367-2630/14/3/035008
- Dittrich, B., & Ryan, J. P. (2010). Simplicity in simplicial phase space. Physical Review D, 82(6), 064026. doi:10.1103/physrevd.82.064026
- Bahr, B., & Dittrich, B. (2009). (Broken) Gauge symmetries and constraints in Regge calculus. Classical and Quantum Gravity, 26(22), 225011. doi:10.1088/0264-9381/26/22/225011
- Bahr, B., Dittrich, B., & He, S. (2011). Coarse-graining free theories with gauge symmetries: the linearized case. New Journal of Physics, 13(4), 045009. doi:10.1088/1367-2630/13/4/045009
- Baratin, A., Dittrich, B., Oriti, D., & Tambornino, J. (2011). Non-commutative flux representation for loop quantum gravity. Classical and Quantum Gravity, 28(17), 175011. doi:10.1088/0264-9381/28/17/175011
- Dittrich, B., & Höhn, P. A. (2012). Canonical simplicial gravity. Classical and Quantum Gravity, 29(11), 115009. doi:10.1088/0264-9381/29/11/115009
- Bahr, B., & Dittrich, B. (2009). Improved and perfect actions in discrete gravity. Physical Review D, 80(12), 124030. doi:10.1103/physrevd.80.124030
- Bahr, B., Dittrich, B., & Ryan, J. P. (2013). Spin Foam Models with Finite Groups. Journal of Gravity, 2013(1), 1-28. doi:10.1155/2013/549824
- Dittrich, B., & Höhn, P. A. (2010). From covariant to canonical formulations of discrete gravity. Classical and Quantum Gravity, 27(15), 155001. doi:10.1088/0264-9381/27/15/155001
- Dittrich, B. (2009). Diffeomorphism Symmetry in Quantum Gravity Models. Advanced Science Letters, 2(2), 151-163. doi:10.1166/asl.2009.1022
- Bahr, B., & Dittrich, B. (2010). Regge calculus from a new angle. New Journal of Physics, 12(3), 033010. doi:10.1088/1367-2630/12/3/033010
- Dittrich, B., & Loll, R. (2006). Counting a black hole in Lorentzian product triangulations. Classical and Quantum Gravity, 23(11), 3849. doi:10.1088/0264-9381/23/11/012
- Bahr, B., Dittrich, B., Kowalski-Glikman, J., Durka, R., & Szczachor, M. (2009). Breaking and Restoring of Diffeomorphism Symmetry in Discrete Gravity. In AIP Conference Proceedings Vol. 1196 (pp. 10-17). AIP Publishing. doi:10.1063/1.3284371
- Dittrich, B., & Loll, R. (2002). Hexagon model for 3D Lorentzian quantum cosmology. Physical Review D, 66(8), 084016. doi:10.1103/physrevd.66.084016
- Asante, S. K., Dittrich, B., & Steinhaus, S. (2023). Spin Foams, Refinement Limit, and Renormalization. In Handbook of Quantum Gravity (pp. 1-37). Springer Nature. doi:10.1007/978-981-19-3079-9_106-1
- Borissova, J. N., & Dittrich, B. (n.d.). Lorentzian quantum gravity via Pachner moves: one-loop evaluation. Journal of High Energy Physics, 2023(9), 69. doi:10.1007/jhep09(2023)069
- Dittrich, B., & Padua-Argüelles, J. (2024). Twisted geometries are area-metric geometries. Physical Review D, 109(2), 026002. doi:10.1103/physrevd.109.026002
- Borissova, J. N., Dittrich, B., & Krasnov, K. (2024). Area-metric gravity revisited. Physical Review D, 109(12), 124035. doi:10.1103/physrevd.109.124035
- Borissova, J., Dittrich, B., Qu, D., & Schiffer, M. (2024). Spikes and spines in 4D Lorentzian simplicial quantum gravity. doi:10.48550/arxiv.2407.13601
- Dittrich, B., & Padua-Argüelles, J. (n.d.). Lorentzian Quantum Cosmology from Effective Spin Foams. Universe, 10(7), 296. doi:10.3390/universe10070296
- Dittrich, B. (n.d.). Modified graviton dynamics from spin foams: the area Regge action. The European Physical Journal Plus, 139(7), 651. doi:10.1140/epjp/s13360-024-05432-4
- Dittrich, B., Jacobson, T., & Padua-Argüelles, J. (2024). de Sitter horizon entropy from a simplicial Lorentzian path integral. Physical Review D, 110(4), 046006. doi:10.1103/physrevd.110.046006
- Borissova, J., Dittrich, B., Qu, D., & Schiffer, M. (n.d.). Spikes and spines in 4D Lorentzian simplicial quantum gravity. Journal of High Energy Physics, 2024(10), 150. doi:10.1007/jhep10(2024)150
- Buoninfante, L., Knorr, B., Kumar, K. S., Platania, A., Anselmi, D., Basile, I., . . . Woodard, R. P. (2024). Visions in Quantum Gravity. arxiv:2412.08696v2
- Asante, S. K., Dittrich, B., & Steinhaus, S. (2024). Spin Foams, Refinement Limit, and Renormalization. In Handbook of Quantum Gravity (pp. 4147-4183). Springer Nature. doi:10.1007/978-981-99-7681-2_106
- Borissova, J., Dittrich, B., Qu, D., & Schiffer, M. (2025). Spikes and spines in 3D Lorentzian simplicial quantum gravity. Classical and Quantum Gravity, 42(5), 055016. doi:10.1088/1361-6382/adaf02
- Scholarly Writing: Insights, Challenges, and Best Practices – A Panel Discussion for Students and Postdocs, Training Programs (TEOSP), 2025/01/27, PIRSA:25010080
- Area metric gravity as an effective continuum theory for spin foams, Quantum Gravity Program at Nordita, Nordic Institute for Theoretical Physics, Stockholm, Sweden, 2024/08/01
- Discussion: QFT framework for quantum gravity: yes or no, Quantum Gravity Program at Nordita, Nordic Institute for Theoretical Physics, Stockholm, Sweden, 2024/08/01
- Discussion: Unitarity, causality, stability, Quantum Gravity Program at Nordita, Nordic Institute for Theoretical Physics, Stockholm, Sweden, 2024/08/01
- Lectures: Regge calculus, effective spin foams and applications, Loops school 2024, Loops school 2024, 2024/05/01
- Plenary Talk: From Spacetime Quanta to Quantum Spacetime, CAP Congress 2024, CAP Congress 2024, 2024/05/01
- Quantum Gravity Seminar Series - TBA, Quantum Gravity, 2024/04/25, PIRSA:24040119
- Area metric gravity as effective theory for spin foams, London-Oldenburg Relativity Seminar, 2024/04/01
- From spacetime quanta to the quantum cosmos, Okinawa Institute of Science and Technology, Onna Son, Japan, 2024/03/01
- Entanglement entropy in lattice gauge theory I & II, Okinawa Institute of Science and Technology, Onna Son, Japan, 2024/02/01
- The (simplicial) Lorentzian quantum gravity path integral, OIST, 2024/02/01
- On the continuum limit of spin foams, International Loop Quantum Gravity Seminar, 2023/11/01
- Open discussion with today's speakers (Dittrich, Heisenberg, Quevedo, Turok), Puzzles in the Quantum Gravity Landscape: viewpoints from different approaches, 2023/10/27, PIRSA:23100018
- The simplicial Lorentzian path integral and spin foams, Puzzles in the Quantum Gravity Landscape: viewpoints from different approaches, 2023/10/27, PIRSA:23100068
- Panel Discussion - Future Directions in QG (Dittrich, Gregory, Loll, Sakellariadou, Surya), Puzzles in the Quantum Gravity Landscape: viewpoints from different approaches, 2023/10/27, PIRSA:23100020
- Diffeomorphism symmetry in the discrete and perfect discretizations, Workshop on Lagrangian Multiform Theory and Pluri-Lagrangian Systems, BIRS Hangzhou, 2023/10/01
- Lectures: Quantum Gravity and Quantum Space Time, XIV School on Gravitation and Mathematical Physics of the Mexican Physical Society, XIV School on Gravitation and Mathematical Physics of the Mexican Physical Society, 2023/09/01
- Progress and challenges for the Lorentzian quantum gravity path integral, Friedrich Schiller University Jena, Jena, Germany, 2023/07/01
- Challenges for quantum gravity, Radboud University Nijmegen, Nijmegen, Netherlands, 2023/07/01
- Quantization of 3D gravity, Okinawa Institute of Science and Technology, Onna Son, Japan, 2023/02/01
- A universal mechanism for the emergence of gravitons from effective spin foams and lattice gravity, Henri Poincaré Institute, Paris, France, 2023/01/01
- CDT lessons for Regge gravity and spin foams, Radboud University Nijmegen, Nijmegen, Netherlands, 2023/01/01
- Progress and challenges for the Lorentzian quantum gravity path integral, Relativity seminar, University of Warsaw, 2022/11/01
- The continuum limit of spin foams - is it GR?, Online seminar series: Quantum Gravity and All of That, 2022/11/01, Video URL
- Progress and challenges for the Lorentzian quantum gravity path integral, OIST, 2022/10/01
- Effective spin foam models and effective actions for their continuum limit, Loops 2021+1, Lyon, 2022/07/01
- Areas as fundamental variables for gravity, Online workshop: Informational architecture of spacetime, OIST, 2022/05/01